煤巷錨桿支護(hù)的關(guān)鍵理論分析
對一些傳統(tǒng)的錨桿支護(hù)理論來說,比如懸吊、組合梁及組合拱等,通常是以具有彈性特點(diǎn)的完整巖體為依據(jù),進(jìn)一步對理論進(jìn)行提出。并且,所提出的理論在特殊的條件下業(yè)非常適用。但是,如果圍巖屬于峰后或殘余強(qiáng)度的破裂巖體,那么對于錨桿支護(hù)的作用機(jī)理利用以上理論是無法進(jìn)行解釋的。近年來,國內(nèi)外有部分學(xué)者對錨桿支護(hù)對巖石力學(xué)性質(zhì)的改變進(jìn)行了探究,但只是對巖石在峰前彈性情況下一些方面的作用進(jìn)行了研究,比如內(nèi)摩擦角、內(nèi)聚力等,對于巖石在峰后的狀況卻沒有做過多研究。
以巷道圍巖中等穩(wěn)定條件為參考依據(jù),并結(jié)合理論研究及相關(guān)計算,可以得到下述結(jié)論:
?。?)對于錨固體來說,在破壞前后許多參數(shù)會隨著錨桿支護(hù)的強(qiáng)度增加而升高,這些參數(shù)包括內(nèi)摩擦角、內(nèi)聚力、錨固體極限強(qiáng)度及殘余強(qiáng)度[2]。與此同時,對于內(nèi)聚力及錨固體殘余強(qiáng)度,破壞后與破壞前比較,有著明顯的提升趨勢。
(2)基于破裂巖體當(dāng)中的布置錨桿,使巖體當(dāng)中的錨固體極限強(qiáng)度及殘余強(qiáng)度得到了有效強(qiáng)化,其中殘余強(qiáng)度強(qiáng)化效果高于極限強(qiáng)度,極限強(qiáng)度與殘余強(qiáng)度之間的比值在1.06至1.13之間,顯然這能夠使破裂巖體更具穩(wěn)定性。
(3)基于破裂巖體當(dāng)中的錨固體極限強(qiáng)度及殘余強(qiáng)度會隨著錨桿支護(hù)強(qiáng)度的增多而逐漸增強(qiáng),在增強(qiáng)到一定程度使,便能夠?yàn)閲鷰r的穩(wěn)定提供依據(jù)。
對一些傳統(tǒng)的錨桿支護(hù)理論來說,比如懸吊、組合梁及組合拱等,通常是以具有彈性特點(diǎn)的完整巖體為依據(jù),進(jìn)一步對理論進(jìn)行提出。并且,所提出的理論在特殊的條件下業(yè)非常適用。但是,如果圍巖屬于峰后或殘余強(qiáng)度的破裂巖體,那么對于錨桿支護(hù)的作用機(jī)理利用以上理論是無法進(jìn)行解釋的。近年來,國內(nèi)外有部分學(xué)者對錨桿支護(hù)對巖石力學(xué)性質(zhì)的改變進(jìn)行了探究,但只是對巖石在峰前彈性情況下一些方面的作用進(jìn)行了研究,比如內(nèi)摩擦角、內(nèi)聚力等,對于巖石在峰后的狀況卻沒有做過多研究。
以巷道圍巖中等穩(wěn)定條件為參考依據(jù),并結(jié)合理論研究及相關(guān)計算,可以得到下述結(jié)論:
?。?)對于錨固體來說,在破壞前后許多參數(shù)會隨著錨桿支護(hù)的強(qiáng)度增加而升高,這些參數(shù)包括內(nèi)摩擦角、內(nèi)聚力、錨固體極限強(qiáng)度及殘余強(qiáng)度[2]。與此同時,對于內(nèi)聚力及錨固體殘余強(qiáng)度,破壞后與破壞前比較,有著明顯的提升趨勢。
(2)基于破裂巖體當(dāng)中的布置錨桿,使巖體當(dāng)中的錨固體極限強(qiáng)度及殘余強(qiáng)度得到了有效強(qiáng)化,其中殘余強(qiáng)度強(qiáng)化效果高于極限強(qiáng)度,極限強(qiáng)度與殘余強(qiáng)度之間的比值在1.06至1.13之間,顯然這能夠使破裂巖體更具穩(wěn)定性。
(3)基于破裂巖體當(dāng)中的錨固體極限強(qiáng)度及殘余強(qiáng)度會隨著錨桿支護(hù)強(qiáng)度的增多而逐漸增強(qiáng),在增強(qiáng)到一定程度使,便能夠?yàn)閲鷰r的穩(wěn)定提供依據(jù)。